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Abstract 

This paper presents a lumped element model of a 
piezoelectric-driven synthetic jet actuator.  A 
synthetic jet, also known as a zero net mass-flux 
device, uses a vibrating diaphragm to generate an 
oscillatory flow through a small orifice or slot.  In 
lumped element modeling (LEM), the individual 
components of a synthetic jet are modeled as 
elements of an equivalent electrical circuit using 
conjugate power variables.  The frequency response 
function of the circuit is derived to obtain an 
expression for out ACQ V , the volume flow rate per 
applied voltage.  The circuit is analyzed to provide 
physical insight into the dependence of the device 
behavior on geometry and material properties.  
Methods to estimate the model parameters are 
discussed, and experimental verification is presented.  
In addition, the model is used to estimate the 
performance of two prototypical synthetic jets, and 
the results are compared with experiment.   

1 Introduction 
Synthetic jet actuators have been the focus of 

significant research activity for the past decade 
(Smith and Glezer 1998).  The interest in synthetic 
jets is primarily due to their utility in flow control 
applications, such as separation control, mixing 
enhancement, etc. (Amitay et al. 1998; Smith et al. 
1998; Chen et al. 1999; Honohan et al. 2000; 
Chatlynne et al. 2001).   

A schematic of a synthetic jet actuator is shown 
in Figure 1.  A typical synthetic jet, also known as a 
zero net mass-flux device, uses a vibrating diaphragm 
to drive oscillatory flow through a small orifice or 
slot.  Although there is no source, a mean jet flow is 
established a few diameters  from  the  orifice  due  to 
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the entrained fluid (in the absence of any grazing 
external flow).   
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Figure 1:  Schematic of a Synthetic Jet. 

In addition to studies that emphasize 
applications, there are numerous others that have 
concentrated on the design, visualization, and/or 
measurements of synthetic jets (Crook et al. 1999; 
Chen et al. 2000; Crook and Wood, 2001; Gilarranz 
and Rediniotis, 2001).  Furthermore, several 
computational studies also have focused on 
fundamental aspects of these devices (Kral et al. 
1997; Rizzeta et al. 1998; Mallinson et al. 2000; 
Utturkar et al. 2002).  Crook and Wood (2001) 
emphasize the importance of understanding the 
scaling and operational characteristics of a synthetic 
jet.  Clearly, this information is required for a user to 
design an appropriate device for a particular 
application.  In addition, feedback control 
applications require the actuator transfer function that 
relates the input voltage to the output property of 
interest (e.g., volumetric flow rate) in the control 
system.   

The design itself represents an electro-
mechanical-acoustic coupled system with frequency 
dependent properties determined by device 
dimensions and material properties.  The analysis and 
design of coupled-domain transducer systems are 
commonly performed using lumped element models 
(Fisher 1955; Hunt 1982; Rossi 1988). 

The main assumption employed in LEM is that 
the characteristic length scales of the governing 

AIAA-2002-0125

Lumped Element Modeling of 
Piezoelectric-Driven Synthetic Jet Actuators 

 
Quentin Gallas,1£ Jose Mathew,1£ Anurag, Kasyap,1£ Ryan Holman,1£ 

Toshikazu Nishida,2¥, Bruce Carroll,1† Mark Sheplak,1§ and Louis Cattafesta1¶ 
 

1Department of Aerospace Engineering, Mechanics, and Engineering Science 
2Department of Electrical and Computer Engineering 

University of Florida 
Gainesville, Florida 32611-6250 

(352) 846-3017, (352) 846-3028 (FAX), catman@aero.ufl.edu 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2002 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2002 to 00-00-2002  

4. TITLE AND SUBTITLE 
Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet
Actuators 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Florida,Department of Electrical and Computer 
Engineering,Gainesville,FL,32611 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 
2

physical phenomena are much larger than the largest 
geometric dimension.  For example, in an acoustic 
system, the acoustic wavelength must be significantly 
larger than the device itself.  If this assumption holds, 
then the governing partial differential equations for 
the distributed system can be “lumped” into a set of 
coupled ordinary differential equations.  This 
approach provides a simple method to estimate the 
dynamic response of a synthetic jet for design and 
control-system implementation. 

The purpose of this paper is to rigorously study 
the application of lumped-element modeling to 
piezoelectric-driven synthetic jet actuators.  To the 
authors knowledge, this represents the first 
application of LEM to piezoelectric-driven synthetic 
jets.  McCormick (2000) employed LEM to a 
speaker-driven synthetic jet, while Rathnasingham 
and Breuer (1997) were the first to develop a low-
order model of a synthetic jet.  In this paper, the 
various lumped elements for each component of a 
synthetic jet are theoretically developed.  The 
resulting equivalent circuit is then analyzed to 
understand the effects of geometry and material 
properties on important design parameters, such as 
resonance frequency and volume displacement per 
applied voltage.  The model assumptions and 
limitations are discussed, along with the results of an 
ongoing experimental study designed to quantify the 
validity of this modeling approach. 

2 Lumped Element Model 
In LEM, the coupling between the various 

energy domains is realized via simplified device 
representations connected to form equivalent circuits.  
The equivalent circuit model is constructed by 
lumping the distributed energy storage and 
dissipation into ideal generalized circuit elements.  In 
this electroacoustic analogy, pressure and voltage are 
effort variables, while current and volumetric flow 
rate are flow variables.  For this paper, we employ an 
impedance analogy, in which elements that share a 
common effort are connected in parallel, while those 
sharing a common flow are connected in series.  For 
a synthetic jet, three different energy domains are 
involved: electrical, mechanical, and fluidic/acoustic.   

The electromechanical actuator consists of a 
clamped axisymmetric PZT patch bonded to a metal 
diaphragm.  The composite diaphragm is driven into 
motion via an applied AC voltage.  The primary 
purpose of the piezoelectric diaphragm is to produce 
large volume displacements in order to draw fluid 
into and out of the cavity.  This represents a 
conversion from the mechanical to acousto-fluidic 
domain.  Consequently, we focus on the first 
axisymmetric vibration mode of the composite 
diaphragm (see Prasad et al. 2002 for details of this 

analysis).  Specifically, linear composite plate theory 
is used to obtain the short -circuit pressure-deflection 
characteristics.  Then, the diaphragm is lumped into 
an equivalent acoustic mass and acoustic compliance.  
The former represents stored kinetic energy, and the 
latter stored potential energy.   

In general, the cavity contains a compressible 
gas that stores potential energy and is therefore 
modeled as an acoustic compliance.  Finally, viscous 
effects in the orifice dissipate a portion of the kinetic 
energy stored in the motion of the oscillating fluid 
mass.  Therefore, there will be an effective acoustic 
mass and acoustic resistance associated with the 
orifice neck.  Flow through the orifice also produces 
losses associated with the discharge of flow from the 
jet exit.  In addition, for low operational frequencies 
where 0 1o oka a c= =ω  (where oa  is the orifice 
radius and c0 is the speed of sound), an acoustic 
radiation mass also be added if the orifice is ejecting 
into a semi-infinite medium (Rossi 1988). 
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Figure 2:  Equivalent circuit representation of a 
piezoelectric-driven synthetic jet. 

The equivalent circuit representation for the 
synthetic jet is shown in Figure 2.  In the notation 
below, the first subscript denotes the domain (e.g., 
“a” for acoustic and “e” for electric), and the second 
subscript describes the element (e.g., “D” for 
diaphragm).  In the electrical domain, ebC  is the 
blocked electrical capacitance of the piezoelectric 
diaphragm driven by an AC voltage ACV .  The term 
blocked is used since it is the impedance seen by the 
source when the diaphragm motion is prevented.   

In the acoustic domain, aDC  and aDM  are the 
acoustic compliance and mass of the piezoceramic 
composite diaphragm, respectively.  aDM  may 
include a radiation mass, if appropriate.  Although 
not shown, an acoustic resistance could also be 
included in series with aDC  and aDM  to model 

structural damping effects.  aCC  is the acoustic 

compliance of the cavity, while aNR  and aNM  are 
the acoustic resistance and mass of the fluid in the 
neck, respectively.  Finally, aOR  is the resistance 

associated with the orifice discharge, and aRadM  is 
the acoustic radiation mass of the orifice.   
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In this paper, we assume that the synthetic jet 
exhausts into a semi-infinite ambient air medium, and 
that the diaphragm is not subject to a mean 
differential pressure.  If necessary, a vent channel can 
be used to equilibrate the mean static pressure across 
the diaphragm, in a manner similar to a microphone 
(Sheplak et al. 1998).  For simplicity, we will assume 
that there is no grazing flow and neglect nonlinear 
amplitude and compressibility effects in the orifice. 

The structure of the equivalent circuit is 
explained as follows.  An AC voltage ACV  is applied 
across the piezoceramic to create an effective 
acoustic pressure that drives the diaphragm into 
motion.  This represents a conversion from the 
electrical to the acoustic domain and is accounted for 
via a transformer with a turns ratio aφ  with units of 
[Pa/V].  An ideal transformer (i.e., power conserving) 
converts energy from one domain to another and 
obeys the relations 

  and .a AC
a

P
i Q V= =φ

φ
 {1} 

In addition, a transformer converts an electrical 
impedance eZ  to an acoustic impedance aZ  via 

 2 2
AC a a

e
a a a

P P
V ZQZ

i Q
φ

φ φ φ
= = = = . {2} 

The motion of the diaphragm can either 
compress the fluid in the cavity or can eject/ingest 
fluid through the orifice.  Physically, this is 
represented as a volume velocity divider, 

c outQ Q Q= + .  The goal of the design is to maximize 
the magnitude of the volume flow rate through the 
orifice per applied voltage out ACQ V . 

3 Equivalent Circuit Model Analysis 
Before estimating the lumped parameters 

defined above, it is instructive to analyze the 
equivalent circuit to obtain the frequency response 
function ( ) ( )out ACQ s V s , where s jω= .  Using Eq. 

{2}, the transformer can be eliminated by converting 
each of the acoustic impedances to their electrical 
equivalent.  The result is depicted in Figure 3, where 
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Figure 3:  Alternative equivalent circuit model. 

Substituting in the expressions for 
, , and eD eC eOZ Z Z  and grouping powers of s in the 

numerator and denominator results in 

 
( )
( ) 4 3 2

4 3 2 1 1
out a aD

AC

Q s C s
V s a s a s a s a s

=
+ + + +

φ
. {4} 

where 

 

( ) ( )
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2
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4
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,
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.
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a C M C M M
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 {5} 

Although this expression is complex, it reveals 
some important features without having to estimate 
any of the parameters in Eq. {5}.  For the purposes of 
this discussion, these parameters can be thought of as 
constants, although in reality some are likely to 
exhibit some frequency and amplitude dependence 
(i.e., due to nonlinear effects).  For a DC voltage 
( 0s = ), the volume velocity is zero.  At low 
frequencies ( 0s → ), the volume velocity is 
proportional to a ACd V ω  since the transduction factor 

is defined as a a aDd C=φ , where ad  is an effective 
acoustic piezoelectric constant defined in Eq. {19}.  
This result emphasizes the need to optimize the 
design of the piezoceramic composite diaphragm 
(Prasad et al. 2002). 

At high frequencies ( s → ∞ ), we find that 

 
( ) 3

out a

AC aC aD aD aN aRad

Q d
V C C M M M s

=
+

. {6} 

The output therefore decreases at a rate of 60 
dB/decade and is inversely proportional to the masses 
and compliances in the system. 

The denominator in Eq. {4} is a 4th-order 
polynomial in s, indicating two resonance 
frequencies.  It is difficult to obtain a compact 
analytical expression for the two resonance 
frequencies (Fischer 1955).  However, the resonance 
frequencies, 1,2f , are controlled by the piezoelectric 
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diaphragm natural frequency Df  and the Helmholtz 

frequency of the cavity Cf  

 

( )

1 1
2

1 1
2

D
aD aD

C
aN aRad aC

f
M C

f
M M C

=

=
+

π

π

 {7} 

with the constraint that 

 1 2 D Cf f f f= . {8} 

To gain physical insight into the behavior of the 
device, three important cases are examined below. 

3.1 Case I:  Incompressible Limit 0aC

aD

C
C

→  

Assuming that the fluid is an ideal gas, then the 
acoustic cavity compliance, which is analogous to the 
inverse of the gas spring constant, is obtained from 
the cavity volume 0V , gas density 0ρ , and the speed 

of sound 0c  via 

 0
2

0 0
aC

V
C

c
=

ρ
. {9} 

In practice, 0aC aDC C →  is achieved by minimizing 
the cavity volume or operating in a liquid medium.   

Since the coefficients 3a  and 4a  in Eq. {5} are 

both proportional to aCC , the synthetic jet transfer 
function reduces to the 2nd-order system 

 
( )
( )

2

2 1

2 2

1

a

out

AC

d
s

Q s a
V s as s

a a

′
=

′
+ +

′ ′

, {10} 

where the prime denotes the limit with 
0aC aDC C → . 

Eq. {10} is written in the form of a canonical 
2nd-order system 2 22

nns sζω ω+ + .  By inspection, we 

find that the natural frequency and damping ratio for 
the incompressible case are given by 

 
1

1
incomp

aN aRad
aD aD

aD

M MC M
M
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 ++ 
 

ω  {11} 

and 

 ( )1
2

aD
incomp aO aN

aN aRad aD

C
R R

M M M
= +

+ +
ζ .{12} 

If aD aN aRadM M M+? , then the natural frequency of 
the synthetic jet actuator equals that of the 
diaphragm.  At resonance, the response is limited by 
the flow resistances in the orifice and the acoustic 
compliance of the diaphragm 

 
1out a

AC aD aO aN

Q d
V C R R

=
+

. {13} 

3.2 Case II: Rigid Diaphragm Limit 0aD

aC

C
C

→  

As described in Prasad et al. (2002), the size of 
the piezoceramic patch is not negligible compared to 
the metal diaphragm for high actuation performance.  
In this case, the piezoceramic composite diaphragm 
cannot be accurately modeled as a homogeneous 
circular plate.  Nonetheless, assuming that the 
diaphragm is clamped, the acoustic compliance of a 
homogeneous clamped circular plate provides insight 
into the scaling behavior of the diaphragm 

 
( )6 2

3

1

16aD

a
C

Eh

−
=

π ν
, {14} 

where a  is the radius, E  is the elastic modulus, ν  is 
Poisson’s ratio, and h  is the thickness.  From Eq. 
{14}, aDC  decreases with decreasing thickness ratio 

a h  and increasing elastic modulus. 

As in the previous case, the coefficients 3a  and 

4a  in Eq. {5} are zero, and the synthetic jet transfer 
function reduces to a 2nd-order system.  The limit 

0aD aCC C →  leads to the following expressions for 
the natural frequency, damping ratio, and response at 
resonance: 

 
( )

1
stiff

aN aRad aCM M C
=

+
ω , {15} 

 ( )1
2

aC
stiff aO aN

aRad aD

C
R R

M M
= +

+
ζ , {16} 

and 

 
1out a

AC aC aO aN

Q d
V C R R

=
+

. {17} 

In this case, the natural frequency of the jet 
corresponds to the Helmholtz frequency.  At 
resonance, the response is limited by the flow 
resistances in the orifice and the acoustic compliance 
of the cavity.  By comparing with Eq. {13}, the 
resonant response differs for these cases by the ratio 
of the acoustic compliances. 
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3.3 Case III:  Equal Resonant Frequencies f1=f2 

One other case of interest occurs when the two 
natural frequencies are equal to each other, 1 2f f= .  

However, this does not imply that D Cf f= , as seen 
in Eq. {8}.  It can be shown that in this case, the 
following is true: 

 2aC aD aD

aD aC aN aRad

C C M
C C M M

+ + =
+

. {18} 

The cavity volume can thus be adjusted accordingly 
to provide a single dominant peak with large resonant 
response out ACQ V . 

4 Model Parameter Estimation 
In this section, we outline the methods and 

assumptions used to estimate each of the quantities in 
Eq. {5}.  The interested reader is referred to Rossi 
(1988) and Beranek (1993) for details of the 
methodology. 

The piezoelectric diaphragm vibrates in response 
to both an applied AC voltage and oscillatory 
differential pressure according to the relation 

 ( )a AC aDQ j d V C P= +ω . {19} 

Here ( )
0a AC P

d Q j V
=

= ω  is the effective acoustic 

piezoelectric constant that relates the volume velocity 
of the diaphragm to the applied voltage ACV .  

( ) ( )
0 0AC AC

aD V V
C Q j P Volume P

= =
= = ∆ω  relates an 

applied differential pressure to the volume change of 
the diaphragm. 

The vertical deflection ( )w r  due to an applied 
differential pressure is  also lumped into an equivalent 
acoustic mass aDM  by equating the lumped kinetic 
energy of the vibrating diaphragm to the total kinetic 
energy using 

 
( ) ( )22

0

1
2

2 2

a

aD

r
M Q w r rdr

′′
= ∫ &ρ

π , {20} 

where ( )rρ ′′  is the distributed mass per unit area, Q  
is the net volume velocity of the diaphragm, and 

( ) ( )w r j w rω=&  is the distributed vertical velocity. 
All of these parameters are calculated via linear 
composite plate theory (see Prasad et al. 2002 for 
details). 

The acoustic resistance of the neck is obtained 
assuming fully-developed laminar pipe flow in the 
neck of length L and radius a0 

 4
0

8out
aN

out

P L
R

Q a
∆

= =
µ

π
, {21} 

where µ  is the viscosity of the fluid and outQ  is the 

volume flow rate produced by the pressure outP∆ . 
Using the same assumption of fully-developed 

pipe flow, the acoustic mass in the neck is obtained 
from 

 
0

22

2 2
0 0

00

1 1 1 2
2 2

a

aN out

rM Q L u rdr
a

  
 = − 
   

∫ρ π  {22} 

or 

 0
2

0

4
3aN

L
M

a
ρ

π
=  {23} 

As mentioned above, the acoustic radiation mass 

aRadM  can be modeled, to first order, as a piston in an 
infinite baffle if the circular orifice is mounted in a 
plate that is much larger in extent than the orifice 
radius 

 0
2

0

8
3aRadM

a
ρ

π
= . {24} 

The acoustic resistance associated with the 
discharge from the orifice can be approximated by 
modeling the orifice as a generalized Bernoulli flow 
meter (White 1979; McCormick 2000): 

 
0 0

2 2 4
0 0

1 1
2 2D D out

aO

K u K Q
R

a a
= =

ρ ρ

π π
, {25} 

where u  is the mean velocity, and ( )1DK O≈  is a 

nondimensional loss coefficient that is a function of 
orifice geometry, Reynolds number, and frequency.  
Note that aOR  is a function of the volume flow rate 

outQ  through the orifice and thereby represents a 
nonlinear resistance. 

As mentioned above, a transduction factor is 
required to move from the electrical to the acoustic 
domain.  This factor is given by 

 a
a

aD

d
C

=φ . {26} 

The blocked electrical capacitance ebC  in Figure 
2 is related to the free electrical capacitance of the 
piezoceramic 0 /p pC A h= ε  by 
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 ( )
2

2
0 0

0

1 1 a
eb

aD

d
C C C

C C
 

= − = − 
 

κ , {27} 

where 2κ  is the electroacoustic coupling factor, ε  is 
the dielectric constant, pA  is the piezoceramic area, 

and ph  is the thickness of the piezoceramic. 

The next section describes experiments designed 
to isolate and measure these parameters.  This allows 
us to evaluate the effectiveness and limitations of the 
lumped element model. 

5 Model Validation 
A modular piezoelectric-driven synthetic jet was 

constructed, as shown in Figure 4, to perform a series 
of experiments to test the validity of the lumped 
element model parameters.  The modular design 
permits a parametric study of the cavity volume, 
orifice diameter and length, and piezoelectric 
diaphragm diameter.  In addition, an access hole is 
provided for a microphone to monitor the fluctuating 
pressure inside the cavity. 

 
Figure 4:  Assembly diagram of modular synthetic 
jet. 

5.1 Piezoelectric Transduction 
The first experiment tested the linear composite 

plate theory that provides estimates for aDC , aDM , 

and ad .  This was accomplished by measuring the 
velocity of the clamped vibrating diaphragm (excited 
by ACV ) using a scanning laser vibrometer and 
integrating the velocity to displacement in the 
frequency domain.  The clamped circular diaphragm 
was removed from the synthetic jet apparatus and 
mounted on an optical table.  The test was also 
performed in a vacuum chamber to eliminate fluid 
loading effects.   

Table 1 provides the dimensions and material 
properties of the diaphragms.  Figure 5(a) shows a 
comparison between the predicted and measured 
response of the piezoceramic diaphragm to a 

sinusoidal excitation voltage at f  = 100 Hz.  The 
measured natural frequency of the diaphragm was 
~2100 Hz while the computed resonance frequency 
was ~2800 Hz.  The non-zero displacement at 

1r a ≈  in Figure 5(a) reveals a compliant boundary 
that does not achieve the “clamped” boundary 
condition assumed in the theory.  When another 
diaphragm was tested using a separate mounting 
system and properly clamped, the agreement between 
theory and experiment was excellent, as shown in 
Figure 5(b).  The measured and predicted natural 
frequencies agreed to within 2%. 

Table 1:  Piezoceramic Diaphragm Details. 
Shim (Brass) I II 
Elastic Modulus (Pa) 8.963×1010 
Poisson’s ratio 0.324 
Density (kg/m3) 8700 
Thickness (mm) 0.20 0.10 
Diameter (mm) 23.5 37 
Piezoceramic (PZT-5A) 
Elastic Modulus (Pa) 6.1×1010 
Poisson’s ratio 0.33 
Density (kg/m3) 7500 
Thickness (mm) 0.11 0.10 
Diameter (mm) 20.5 25.0 
Dielectric Permittivity (F/m) 8.85×10-12 
d31 (m/V) -2.7×10-10 
CaD (s2.m4/kg) 6.53×10-13 2.23×10-11 
M aD (kg/m4) 8.15×103 2.43×103 
ϕa (Pa/V) 88.6 15.1 
 

Future testing will assess the severity of 
nonlinear effects when the excitation amplitude is 
increased.  We will also seek to directly measure the 
acoustic compliance of the diaphragm aDC  in a 
normal incidence plane-wave tube. 
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(a) Compliant boundary case. 
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(b) Clamped boundary case. 

 
Figure 5:  Comparison between predicted and 
measured response of piezoceramic diaphragms to a 
sinusoidal excitation voltage at low frequency. 
Theory (�) and scanning laser vibrometer in 

ambient air (�,�) and in a vacuum chamber (¯). 

5.2 Cavity Acoustic Compliance 
The value for the cavity acoustic compliance 

aCC  is obtained from Eq. {9}.  The cavity volume 
can be calculated from the geometry.  To test the 
theory, the orifice was replaced with a solid cap to 
provide a closed cavity and all leaks were carefully 
minimized.  The piezoceramic was then driven with a 
sinusoid, and the displacement of the vibrating 
diaphragm was measured with a laser displacement 
sensor.  A B&K 1/8 in. microphone then measured 
the fluctuating pressure in the closed cavity.   
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Figure 6:  Measured acoustic compliance aCC  vs. 
frequency in closed cavity of synthetic jet. 

The amplitude of the sinusoid was adjusted to 
avoid harmonics in either signal.  The frequency 
response function between the pressure and 
displacement signal at the diaphragm center 0w  was 

used to measure 0P w  at several frequencies and 

calculate aCC , as shown in Figure 6.  Using the 
average measured value of 9.89 MPa/m and the 
measured mode shape, the cavity volume was 

determined to be 2.6×10-6 m3.  This is within 4% of 
the cavity volume calculated from the geometric 
drawings.   
5.3 Acoustic Mass and Resistance in Orifice 

The flow in the neck of the orifice is modeled as 
a steady, fully-developed laminar flow in a circular 
duct of radius 0a  and length L .  The resulting 
Poiseuille flow leads to the expressions for acoustic 
resistance and acoustic mass defined in Eqs. {21} and 
{23}, respectively.  At higher frequencies, the 
velocity for the case of flow in a circular channel 
driven by an oscillating pressure gradient is discussed 
in White (1974) 

 ( )

2

0

2
0 0

0

, 1 j tout

rJ j
P

u r t j e
L a

J j

  
 −   ∆   = − 

   −     

ω

ω
ν

ωρ ω
ν

, {28} 

where 0J  is a Bessel function of zero order, and ν  is 
the kinematic viscosity.  The velocity u  is 
proportional to the pressure gradient and inversely 
proportional to 0ρ ω .  Furthermo re, the velocity 
profile is characterized by the Stokes number 

2
0St aω ν= .  In the limit of 0St → , the velocity 

profile asymptotes to a parabolic shape (i.e., 
Poiseuille flow).  As St  increases, the thickness of 
the Stokes layers decreases below 0a , leading to an 
inviscid core surrounded by a viscous annular region.   

 
Figure 7:  Variation in velocity profile vs. Stokes 
number St = 1, 10, and 30 for oscillatory channel 
flow in a circular duct. 

These velocity profiles can be integrated 
numerically to obtain outQ  and obtain the real 
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(resistive) and imaginary (reactive) parts of the 
acoustic impedance as a function of the Stokes 
number 

 out
aN aN aN aN aN

out

P
Z R jX R j M

Q
∆

= = + = + ω . {29} 

The results shown in Figure 8 reveal that, at low 
frequencies, the acoustic resistance asymptotes to the 
steady value given in Eq. {21} and increases 
gradually with frequency.  However, the acoustic 
mass is approximately constant with frequency.  The 
data in Figure 8 can be used to provide frequency 
dependent estimates for the acoustic resistance and 
mass in the lumped element model.   

 
Figure 8:  Nondimensional resistance and reactance 
vs. 2St  for oscillatory channel flow in a circular 
duct. 

It should also be noted that, depending on the 
aspect ratio 0L a  of the orifice, the fully developed 
assumption may not be valid.  Only for large values 
of 0L a  is the fully-developed assumption expected 

to be reasonable.  For small values of 0L a , the 
orifice loss given in Eq. {25} is expected to 
dominate. 

The models discussed in this section are simple 
and neglect potentially significant issues, such as 
nonlinear effects due to large amplitude pressure 
oscillations in the cavity (Ingard 1967) and transition 
to turbulent flow and compressibility effects in the 
orifice.  The grazing flow effects, which are relevant 
when the synthetic jet interacts with a boundary 
layer, have also been ignored (Mittal et al. 2001). 
5.4 Comparison between Model & Experiment 

In this section, the lumped element model is used 
to predict the performance of two synthetic jets vs. 

frequency.  The dimensions of the device are 
summarized in Tables 1 and 2. 

A Dantec two-component Laser Doppler 
Velocimeter (LDV) system was used to measure the 
magnitude of the peak velocity produced by the 
synthetic jet vs. frequency.  The synthetic jet was 
placed inside a large glass fish tank, which was filled 
with oil seed particles and closed.  The probe volume 
was located over the center of the orifice as close as 
possible to the exit plane.  The system was operated 
in backscatter mode and resulted in a probe-volume 
length that was larger than the diameter of the orifice.  
Because of the poor spatial resolution, the peak 
velocity in the jet was measured using a phase-
averaging scheme. 

Table 2:  Synthetic Jet Details. 
Cavity: I II 
Volume (m3) 2.50×10-6 5.00×10-6 
Orifice: 
Radius (mm) 1.65 0.84 
Length (mm) 1.65 0.84 
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Figure 9:  Comparison between the lumped element 
model and experiment for Case I. 

Case I uses a smaller piezoceramic diaphragm 
and cavity volume and a larger orifice than Case II.  
However, both devices use an orifice with the same 
aspect ratio 0L a  and are driven with ACV  = 50 V 
amplitude sinusoids.  The model prediction in Figure 
9 has the correct shape, but the frequency of the first 
resonance peak is high.  Furthermore, the velocities 
are overpredicted.  Note that the peak velocity is 
estimated from Poiseuille flow, where 

( )2
max 02 2 outu u Q a= = π .  Since this relation is only 

valid at low frequencies for ducts with fully-
developed flow, this approximation is likely to 
introduce significant error as frequency increases.  
Eq. {28} can be used to determine the relationship 
between maxu  and outQ , but this has not been done in 
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this paper.  Clearly, the velocity profile must be 
measured and integrated to obtain outQ . 

Case II corresponds approximately to the 
situation described in Section 3.3.  In particular, this 
combination brings the two resonance peaks close 
together, resulting in a single dominant peak with jet 
velocities of over 60 m/s.  The lumped element 
model accurately predicts the resonance frequency 
and maximum velocity and also possesses the proper 
shape of the frequency response function. 
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Figure 10:  Comparison between the lumped element 
model and experiment for Case II. 

These results reveal the power and shortcomings 
of the model in its present form.  Clearly, the flow in 
the vicinity of the orifice must be studied further in 
order to obtain better estimates of the losses and 
velocity profile characteristics.  Furthermore, from 
Figure 8 we expect the resistance to increase with 
frequency, but the current model only uses the DC 
value in Eq. {21}.  Furthermore, the loss coefficient 

DK  in Eq. {25} is treated as a constant but is 
probably a function of (at least) the orifice Reynolds 
number, Stokes number, and geometry. 

6 Conclusions and Future Work 
A lumped element model of a piezoelectric-

driven synthetic jet actuator has been developed and 
compared with experiment.  LEM provides a 
compact analytical model and valuable physical 
insight into the dependence of the device behavior on 
geometry and material properties.  The model reveals 
that a synthetic jet is a 4th-order coupled oscillator.  
One oscillator is a Helmholtz resonator, and the 
second is the piezoelectric diaphragm.  Simple 
arguments reveal three important special cases 
corresponding to single oscillators.  One case occurs 
when the fluid is incompressible (i.e. water) or, in the 
case of a gaseous medium, the acoustic compliance 
of the cavity is small compared to that of the 
piezoelectric diaphragm.  The second case is similar 

to that of a rigid piston and occurs when the acoustic 
compliance of the piezoelectric diaphragm is small 
compared to that of the cavity.  In this case, the 
synthetic jet acts like a driven Helmholtz resonator.  
The third case occurs when the cavity compliance is 
adjusted to provide a single resonant peak as 
described in Eq. {18}. 

Methods to estimate the parameters of the 
lumped element model were discussed in some detail 
and experiments were performed to isolate different 
components of the model and evaluate their 
suitability.  The results indicate that the linear 
composite plate theory is accurate when the assumed 
clamped boundary condition is achieved.  Similarly, 
the cavity acoustic compliance model was validated.   

The details of the flow in the orifice requires 
further study.  It is this region that dictates the 
acoustic mass and resistance in the neck.  Accurate 
knowledge of the acoustic mass is required to 
determine the Helmholtz frequency of the synthetic 
jet, while the resistance limits the response of the 
device near resonance. 

The model was applied to two prototypical 
synthetic jets and found to provide fair agreement 
with the measured performance.  Better models are 
needed for the unsteady flow in the orifice, including 
that of entrance and exit effects.  In addition, 
nonlinear and grazing flow effects remain to be 
studied in a rigorous fashion. 

In future work, additional parameters will be 
varied in these experiments to yield a performance 
database for the synthetic jet.  Emphasis will be 
placed on the ratio of the orifice length to the hole 
radius.  This variable will be systematically varied in 
concert with the other important nondimensional 
parameters, such as the orifice Reynolds and the 
Stokes numbers.  Additional velocity measurements 
with improved spatial resolution will also be 
performed to map out the spatial variations in the 
synthetic jet velocity field.  Finally, an optimization 
study of the entire lumped element model is 
underway and should lead to synthetic jets with 
improved performance. 
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